首页  >  专题文章  >  文章正文
shRNA表达克隆

结语

May 06, 2008 No Comments

(III)结语

       近年来,对于miRNA在正常基因调节与人类疾病发生中的作用的认识方面有了突飞猛进的进展。基因治疗领域的研究者们开始转而将反义技术、核酶及基因转移等方面的方法应用于miRNA。此外,miRNA的表达水平很有可能成为新的诊断标志。而对于miRNA水平的控制同样很可能具有治疗意义。最后,通过对miRNA生物学功能与机制的进一步研究,基因治疗学家有可能设计出更为安全的基因转移载体以及更加安全和有效的RNAi治疗方法。小词典:

1.脱靶效应:RNA干扰过程中,siRNA和mRNA特异结合能够使得靶基因沉默。但研究证实,siRNA可能与非靶基因结合而导致非靶基因沉默,这种现象称为siRNA脱靶效应。

2.治疗窗:又称治疗浓度范围。这是根据药物的毒效及药效的量效曲线提出的量化安全性指标,窗口的大小即治疗浓度的范围。通常该浓度范围的高低限的比值为2~3,如大于5则该药的安全性较大,同一药物在治疗要求不同时,该比值也不相同。

原文检索:HUMAN GENE THERAPY 19:27-37(January 2008). Mary Ann Liebert, Inc.DOI:10.1089/hum.2007.147

(本文由 葛晶 筱玥 编译)

参考文献:

1  LAGOS-QUINTANA, M., RAUHUT, R., LENDECKEL, W., and TUSCHL, T. (2001). Identification of novel genes coding for small expressed  RNAs. Science 294, 853–858.

2  BARTEL, D.P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

3  HARFE, B.D. (2005). MicroRNAs in vertebrate development. Curr. Opin. Genet. Dev. 15, 410–415.

4  KLOOSTERMAN, W.P., and PLASTERK, R.H. (2006). The diverse functions of microRNAs in animal development and disease. Dev. Cell 11, 441–450.

5  KRUTZFELDT, J., and STOFFEL, M. (2006). MicroRNAs: A new class of regulatory genes affecting metabolism. Cell Metab. 4, 9–12.

6  PETERS, L., and MEISTER, G. (2007). Argonaute proteins: Mediators of RNA silencing. Mol. Cell 26, 611–623.

7  FARH, K.K., GRIMSON, A., JAN, C., LEWIS, B.P., JOHNSTON, W.K., LIM, L.P., BURGE, C.B., and BARTEL, D.P. (2005). The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821.

8  LIM, L.P., LAU, N.C., GARRETT-ENGELE, P., GRIMSON, A., SCHELTER, J.M., CASTLE, J., BARTEL, D.P., LINSLEY, P.S., and JOHNSON, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773.

9  STARK, A., BRENNECKE, J., BUSHATI, N., RUSSELL, R.B., and COHEN, S.M. (2005). Animal microRNAs confer robustness to gene expression and have a significant impact on 3’ UTR evolution. Cell 123, 1133–1146.

10 LIU, C.G., CALIN, G.A., MELOON, B., GAMLIEL, N., SEVIGNANI, C., FERRACIN, M., DUMITRU, C.D., SHIMIZU, M., ZUPO, S., DONO, M., ALDER, H., BULLRICH, F., NEGRINI, M., and CROCE, C.M. (2004). An oligonucleotide microchip for genomewide microRNA profiling in human and mouse tissues. Proc. Natl. Acad. Sci. U.S.A. 101, 9740–9744.

11 LU, J., GETZ, G., MISKA, E.A., ALVAREZ-SAAVEDRA, E., LAMB, J., PECK, D., SWEET-CORDERO, A., EBERT, B.L., MAK, R.H., FERRANDO, A.A., DOWNING, J.R., JACKS, T., HORVITZ, H.R., and GOLUB, T.R. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834–838.

12 CHEN, C., RIDZON, D.A., BROOMER, A.J., ZHOU, Z., LEE, D.H., NGUYEN, J.T., BARBISIN, M., XU, N.L., MAHUVAKAR, V.R., ANDERSEN, M.R., LAO, K.Q., LIVAK, K.J., and GUEGLER, K.J. (2005). Real-time quantification of microRNAs by stem–loop RTPCR. Nucleic Acids Res. 33, e179.

13 JIANG, J., LEE, E.J., GUSEV, Y., and SCHMITTGEN, T.D. (2005). Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res. 33, 5394–5403.

14 MURAKAMI, Y., YASUDA, T., SAIGO, K., URASHIMA, T., TOYODA, H., OKANOUE, T., and SHIMOTOHNO, K. (2005). Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25, 2537–2545.

15 RAYMOND, C.K., ROBERTS, B.S., GARRETT-ENGELE, P., LIM, L.P., and JOHNSON, J.M. (2005). Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and shortinterfering RNAs. RNA 11, 1737–1744.

16 HE, L., THOMSON, J.M., HEMANN, M.T., HERNANDO-MONGE, E., MU, D., GOODSON, S., POWERS, S., CORDON-CARDO, C., LOWE, S.W., HANNON, G.J., and HAMMOND, S.M. (2005). A microRNA polycistron as a potential human oncogene. Nature 435, 828–833.

17 IORIO, M.V., FERRACIN, M., LIU, C.G., VERONESE, A., SPIZZO, R., SABBIONI, S., MAGRI, E., PEDRIALI, M., FABBRI, M., CAMPIGLIO, M., MENARD, S., PALAZZO, J.P., ROSENBERG, A., MUSIANI, P., VOLINIA, S., NENCI, I., CALIN, G.A., QUERZOLI, P., NEGRINI, M., and CROCE, C.M. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070.

18 CALIN, G.A., and CROCE, C.M. (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866.

19 ESQUELA–KERSCHER, A., and SLACK, F.J. (2006). OncomiRs: MicroRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269.

20 CALIN, G.A., DUMITRU, C.D., SHIMIZU, M., BICHI, R., ZUPO, S., NOCH, E., ALDLER, H., RATTAN, S., KEATING, M., RAI, K., RASSENTI, L., KIPPS, T., NEGRINI, M., BULLRICH, F., and CROCE, C.M. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U.S.A. 99, 15524–15529.

21 CALIN, G.A., FERRACIN, M., CIMMINO, A., DI LEVA, G., SHIMIZU, M., WOJCIK, S.E., IORIO, M.V., VISONE, R., SEVER, N.I., FABBRI, M., IULIANO, R., PALUMBO, T., PICHIORRI, F., ROLDO, C., GARZON, R., SEVIGNANI, C., RASSENTI, L., ALDER, H., VOLINIA, S., LIU, C.G., KIPPS, T.J., NEGRINI, M., and CROCE, C.M. (2005). A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353, 1793–1801.

22 CIMMINO, A., CALIN, G.A., FABBRI, M., IORIO, M.V., FERRACIN, M., SHIMIZU, M., WOJCIK, S.E., AQEILAN, R.I., ZUPO, S., DONO, M., RASSENTI, L., ALDER, H., VOLINIA, S., LIU, C.G., KIPPS, T.J., NEGRINI, M., and CROCE, C.M. (2005). miR- 15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. U.S.A. 102, 13944–13949.

23 TAKAMIZAWA, J., KONISHI, H., YANAGISAWA, K., TOMIDA, S., OSADA, H., ENDOH, H., HARANO, T., YATABE, Y., NAGINO, M., NIMURA, Y., MITSUDOMI, T., and TAKAHASHI, T. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756.

24 JOHNSON, S.M., GROSSHANS, H., SHINGARA, J., BYROM, M., JARVIS, R., CHENG, A., LABOURIER, E., REINERT, K.L., BROWN, D., and SLACK, F.J. (2005). RAS is regulated by the let-7 microRNA family. Cell 120, 635–647.

25 JOHNSON, C.D., ESQUELA-KERSCHER, A., STEFANI, G., BYROM, M., KELNAR, K., OVCHARENKO, D., WILSON, M., WANG, X., SHELTON, J., SHINGARA, J., CHIN, L., BROWN, D., and SLACK, F.J. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67, 7713–7722.

26 COSTINEAN, S., ZANESI, N., PEKARSKY, Y., TILI, E., VOLINIA, S., HEEREMA, N., and CROCE, C.M. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 103, 7024–7029.

27 SI, M.L., ZHU, S., WU, H., LU, Z., WU, F., and MO, Y.Y. (2007). miR-21-mediated tumor growth. Oncogene 26, 2799–2803.

28 CALIN, G.A., SEVIGNANI, C., DUMITRU, C.D., HYSLOP, T., NOCH, E., YENDAMURI, S., SHIMIZU, M., RATTAN, S., BULLRICH, F., NEGRINI, M., and CROCE, C.M. (2004). Human mi- croRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. U.S.A. 101, 2999–3004.

29 DONSANTE, A., MILLER, D.G., LI, Y., VOGLER, C., BRUNT, E.M., RUSSELL, D.W., and SANDS, M.S. (2007). AAV vector integration sites in mouse hepatocellular carcinoma. Science 317, 477.

30 METZLER, M., WILDA, M., BUSCH, K., VIEHMANN, S., and BORKHARDT, A. (2004). High expression of precursor microRNA- 155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39, 167–169.

31 EIS, P.S., TAM, W., SUN, L., CHADBURN, A., LI, Z., GOMEZ, M.F., LUND, E., and DAHLBERG, J.E. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. U.S.A. 102, 3627–3632.

32 KLUIVER, J., POPPEMA, S., DE JONG, D., BLOKZIJL, T., HARMS, G., JACOBS, S., KROESEN, B.J., and VAN DEN BERG, A. (2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243–249.

33 SULLIVAN, C.S., GRUNDHOFF, A., TEVETHIA, S., TREISMAN, R., PIPAS, J.M., and GANEM, D. (2006). Expression and function of microRNAs in viruses great and small. Cold Spring Harb. Symp. Quant. Biol. 71, 351–356.

34 DYKXHOORN, D.M. (2007). MicroRNAs in viral replication and pathogenesis. DNA Cell Biol. 26, 239–249.

35 PFEFFER, S., ZAVOLAN, M., GRASSER, F.A., CHIEN, M., RUSSO, J.J., JU, J., JOHN, B., ENRIGHT, A.J., MARKS, D., SANDER, C., and TUSCHL, T. (2004). Identification of virus-encoded micro-RNAs. Science 304, 734–736.

36 CUI, C., GRIFFITHS, A., LI, G., SILVA, L.M., KRAMER, M.F., GAASTERLAND, T., WANG, X.J., and COEN, D.M. (2006). Prediction and identification of herpes simplex virus 1-encoded microRNAs. J. Virol. 80, 5499–5508.

37 PFEFFER, S., SEWER, A., LAGOS-QUINTANA, M., SHERIDAN, R., SANDER, C., GRASSER, F.A., VAN DYK, L.F., HO, C.K., SHUMAN, S., CHIEN, M., RUSSO, J.J., JU, J., RANDALL, G., LINDENBACH, B.D., RICE, C.M., SIMON, V., HO, D.D., ZAVOLAN, M., and TUSCHL, T. (2005). Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276.

38 OMOTO, S., and FUJII, Y.R. (2005). Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J. Gen. Virol. 86, 751–755.

39 CAI, X., LU, S., ZHANG, Z., GONZALEZ, C.M., DAMANIA, B., and CULLEN, B.R. (2005). Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. U.S.A. 102, 5570–5575.

40 SAMOLS, M.A., HU, J., SKALSKY, R.L., and RENNE, R. (2005). Cloning and identification of a microRNA cluster within the latencyassociated region of Kaposi’s sarcoma-associated herpesvirus. J. Virol. 79, 9301–9305.

41 BURNSIDE, J., BERNBERG, E., ANDERSON, A., LU, C., MEYERS, B.C., GREEN, P.J., JAIN, N., ISAACS, G., and MORGAN, R.W. (2006). Marek’s disease virus encodes microRNAs that map to meq and the latency-associated transcript. J. Virol. 80, 8778–8786.

42 YAO, Y., ZHAO, Y., XU, H., SMITH, L.P., LAWRIE, C.H., SEWER, A., ZAVOLAN, M., and NAIR, V. (2007). Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J. Virol. 81, 7164–7170.

43 CAI, X., SCHAFER, A., LU, S., BILELLO, J.P., DESROSIERS, R.C., EDWARDS, R., RAAB-TRAUB, N., and CULLEN, B.R. (2006). Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2, e23.

44 SCHAFER, A., CAI, X., BILELLO, J.P., DESROSIERS, R.C., and CULLEN, B.R. (2007). Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus. Virology 364, 21–27.

45 SULLIVAN, C.S., and GANEM, D. (2005). MicroRNAs and viral infection. Mol. Cell 20, 3–7.

46 FURNARI, F.B., ADAMS, M.D., and PAGANO, J.S. (1993). Unconventional processing of the 3_ termini of the Epstein–Barr virus DNA polymerase mRNA. Proc. Natl. Acad. Sci. U.S.A. 90, 378–382.

47 GUPTA, A., GARTNER, J.J., SETHUPATHY, P., HATZIGEORGIOU, A.G., and FRASER, N.W. (2006). Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442, 82–85.

48 JOPLING, C.L., YI, M., LANCASTER, A.M., LEMON, S.M., and SARNOW, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581. www.sciencemag.org

49 KRUTZFELDT, J., RAJEWSKY, N., BRAICH, R., RAJEEV, K.G., TUSCHL, T., MANOHARAN, M., and STOFFEL, M. (2005). Silencing of microRNAs in vivo with “antagomiRs.” Nature 438, 685–689.

50 ESAU, C., DAVIS, S., MURRAY, S.F., YU, X.X., PANDEY, S.K., PEAR, M., WATTS, L., BOOTEN, S.L., GRAHAM, M., MCKAY, R., SUBRAMANIAM, A., PROPP, S., LOLLO, B.A., FREIER, S., BENNETT, C.F., BHANOT, S., and MONIA, B.P. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98.

51 LECELLIER, C.H., DUNOYER, P., ARAR, K., LEHMANN-CHE, J., EYQUEM, S., HIMBER, C., SAIB, A., and VOINNET, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560.

52 LU, S., and CULLEN, B.R. (2004). Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol. 78, 12868–12876.

53 ABELSON, J.F., KWAN, K.Y., O’ROAK, B.J., BAEK, D.Y., STILLMAN, A.A., MORGAN, T.M., MATHEWS, C.A., PAULS, D.L., RASIN, M.R., GUNEL, M., DAVIS, N.R., ERCAN-SENCICEK,A.G., GUEZ, D.H., SPERTUS, J.A., LECKMAN, J.F., DURE, L.S.T., KURLAN, R., SINGER, H.S., GILBERT, D.L., FARHI, A., LOUVI, A., LIFTON, R.P., SESTAN, N., and STATE, M.W. (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome.Science 310, 317–320.

54 VAN ROOIJ, E., SUTHERLAND, L.B., LIU, N., WILLIAMS, A.H., MCANALLY, J., GERARD, R.D., RICHARDSON, J.A., and OLSON, E.N. (2006). A signature pattern of stress-responsive micro-RNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U.S.A. 103, 18255–18260.

55 LUKIW, W.J. (2007). Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18, 297–300.56 PERKINS, D.O., JEFFRIES, C.D., JARSKOG, L.F., THOMSON, J.M., WOODS, K., NEWMAN, M.A., PARKER, J.S., JIN, J., and HAMMOND, S.M. (2007). MicroRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol. 8, R27.

57 ESAU, C., KANG, X., PERALTA, E., HANSON, E., MARCUSSON, E.G., RAVICHANDRAN, L.V., SUN, Y., KOO, S., PERERA, R.J., JAIN, R., DEAN, N.M., FREIER, S.M., BENNETT, C.F., LOLLO, B., and GRIFFEY, R. (2004). MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279, 52361–52365.

58 MEISTER, G., LANDTHALER, M., DORSETT, Y., and TUSCHL, T. (2004). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544–550.

59 POY, M.N., ELIASSON, L., KRUTZFELDT, J., KUWAJIMA, S., MA, X., MACDONALD, P.E., PFEFFER, S., TUSCHL, T., RAJEWSKY, N., RORSMAN, P., and STOFFEL, M. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230.

60 CHENG, A.M., BYROM, M.W., SHELTON, J., and FORD, L.P. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297.

61 LEE, Y.S., KIM, H.K., CHUNG, S., KIM, K.S., and DUTTA, A. (2005). Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J. Biol. Chem. 280, 16635–16641.

62 SCHRATT, G.M., TUEBING, F., NIGH, E.A., KANE, C.G., SABATINI, M.E., KIEBLER, M., and GREENBERG, M.E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289.

63 BOUTLA, A., DELIDAKIS, C., and TABLER, M. (2003). Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res. 31, 4973–4980.

64 HUTVAGNER, G., SIMARD, M.J., MELLO, C.C., and ZAMORE, P.D. (2004). Sequence-specific inhibition of small RNA function. PLoS Biol. 2, E98.

65 LEAMAN, D., CHEN, P.Y., FAK, J., YALCIN, A., PEARCE, M., UNNERSTALL, U., MARKS, D.S., SANDER, C., TUSCHL, T., and GAUL, U. (2005). Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121, 1097–1108.

66 KRUTZFELDT, J., KUWAJIMA, S., BRAICH, R., RAJEEV, K.G., PENA, J., TUSCHL, T., MANOHARAN, M., and STOFFEL, M. (2007). Specificity, duplex degradation and subcellular localization of antagomiRs. Nucleic Acids Res. 35, 2885–2892.

67 WEILER, J., HUNZIKER, J., and HALL, J. (2006). Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Ther. 13, 496–502.

68 DAVIS, S., LOLLO, B., FREIER, S., and ESAU, C. (2006). Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res. 34, 2294–2304.

69 OROM, U.A., KAUPPINEN, S., and LUND, A.H. (2006). LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372, 137–141.

70 FRANCO-ZORRILLA, J.M., VALLI, A., TODESCO, M., MATEOS, I., PUGA, M.I., RUBIO-SOMOZA, I., LEYVA, A., WEIGEL, D., GARCIA, J.A., and PAZ-ARES, J. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39, 1033–1037.

71 IORIO, M.V., VISONE, R., DI LEVA, G., DONATI, V., PETROCCA, F., CASALINI, P., TACCIOLI, C., VOLINIA, S., LIU, C.G., ALDER, H., CALIN, G.A., MENARD, S., and CROCE, C.M. (2007). MicroRNA signatures in human ovarian cancer. Cancer Res. 67, 8699–8707.

72 MENG, F., HENSON, R., WEHBE-JANEK, H., GHOSHAL, K., JACOB, S.T., and PATEL, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658.

73 CHAN, J.A., KRICHEVSKY, A.M., and KOSIK, K.S. (2005). MicroRNA- 21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033.

74 LEE, E.J., GUSEV, Y., JIANG, J., NUOVO, G.J., LERNER, M.R., FRANKEL, W.L., MORGAN, D.L., POSTIER, R.G., BRACKETT, D.J., and SCHMITTGEN, T.D. (2007). Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer 120, 1046–1054.

75 FULCI, V., CHIARETTI, S., GOLDONI, M., AZZALIN, G., CARUCCI, N., TAVOLARO, S., CASTELLANO, L., MAGRELLI, A., CITARELLA, F., MESSINA, M., MAGGIO, R., PERAGINE, N., SANTANGELO, S., MAURO, F.R., LANDGRAF, P., TUSCHL, T., WEIR, D.B., CHIEN, M., RUSSO, J.J., JU, J., SHERIDAN, R., SANDER, C., ZAVOLAN, M., GUARINI, A., FOA, R., and MACINO, G. (2007). Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109, 4944–4951.

76 ZHU, S., SI, M.L., WU, H., and MO, Y.Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282, 14328–14336.

77 MCMANUS, M.T., PETERSEN, C.P., HAINES, B.B., CHEN, J., and SHARP, P.A. (2002). Gene silencing using micro-RNA designed hairpins. RNA 8, 842–850.

78 ZENG, Y., WAGNER, E.J., and CULLEN, B.R. (2002). Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333.

79 BODEN, D., PUSCH, O., SILBERMANN, R., LEE, F., TUCKER, L., and RAMRATNAM, B. (2004). Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res. 32, 1154–1158.

80 TAZAWA, H., TSUCHIYA, N., IZUMIYA, M., and NAKAGAMA, H. (2007). Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl. Acad. Sci. U.S.A. 104, 15472–15477.

81 LIANG, Z., WU, T., LOU, H., YU, X., TAICHMAN, R.S., LAU, S.K., NIE, S., UMBREIT, J., and SHIM, H. (2004). Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res. 64, 4302–4308.

82 LIANG, Z., YOON, Y., VOTAW, J., GOODMAN, M.M., WILLIAMS, L., and SHIM, H. (2005). Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res. 65, 967–971.

83 LIANG, Z., WU, H., REDDY, S., ZHU, A., WANG, S., BLEVINS, D., YOON, Y., ZHANG, Y., and SHIM, H. (2007). Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem. Biophys. Res. Commun. 363, 542–546.

84 LI, Z., ZHAN, W., WANG, Z., ZHU, B., HE, Y., PENG, J., CAI, S., and MA, J. (2006). Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem. Biophys. Res. Commun. 348, 229–237.

85 BRUECKNER, B., KUCK, D., and LYKO, F. (2007). DNA methyltransferase inhibitors for cancer therapy. Cancer J. 13, 17–22.

86 FABBRI, M., GARZON, R., CIMMINO, A., LIU, Z., ZANESI, N., CALLEGARI, E., LIU, S., ALDER, H., COSTINEAN, S., FERNANDEZ-CYMERING, C., VOLINIA, S., GULER, G., MORRISON, C.D., CHAN, K.K., MARCUCCI, G., CALIN, G.A., HUEBNER, K., and CROCE, C.M. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl. Acad. Sci. U.S.A. 104, 15805–15810.

87 MENG, F., HENSON, R., LANG, M., WEHBE, H., MAHESHWARI, S., MENDELL, J.T., JIANG, J., SCHMITTGEN, T.D., and PATEL, T. (2006). Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130, 2113–2129.

88 ZHOU, H., XIA, X.G., and XU, Z. (2005). An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res. 33, e62.

89 KAWASAKI, H., and TAIRA, K. (2003). Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 31, 700–707.

90 GRIMM, D., STREETZ, K.L., JOPLING, C.L., STORM, T.A., PANDEY, K., DAVIS, C.R., MARION, P., SALAZAR, F., and KAY, M.A. (2006). Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541.

91 CASTANOTTO, D., SAKURAI, K., LINGEMAN, R., LI, H., SHIVELY, L., AAGAARD, L., SOIFER, H., GATIGNOL, A., RIGGS, A., and ROSSI, J.J. (2007). Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res. 35, 5154–5164.

92 JOHN, M., CONSTIEN, R., AKINC, A., GOLDBERG, M., MOON, Y.A., SPRANGER, M., HADWIGER, P., SOUTSCHEK, J., VORNLOCHER, H.P., MANOHARAN, M., STOFFEL, M., LANGER, R., ANDERSON, D.G., HORTON, J.D., KOTELIANSKY, V., and BUMCROT, D. (2007). Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 449, 745–747.

93 JACKSON, A.L., BARTZ, S.R., SCHELTER, J., KOBAYASHI, S.V., BURCHARD, J., MAO, M., LI, B., CAVET, G., and LINSLEY, P.S. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637.

94 SCACHERI, P.C., ROZENBLATT-ROSEN, O., CAPLEN, N.J., WOLFSBERG, T.G., UMAYAM, L., LEE, J.C., HUGHES, C.M., SHANMUGAM, K.S., BHATTACHARJEE, A., MEYERSON, M., and COLLINS, F.S. (2004). Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 101, 1892–1897.

95 LIN, X., RUAN, X., ANDERSON, M.G., MCDOWELL, J.A., KROEGER, P.E., FESIK, S.W., and SHEN, Y. (2005). siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 33, 4527–4535.

96 BIRMINGHAM, A., ANDERSON, E.M., REYNOLDS, A., ILSLEYTYREE, D., LEAKE, D., FEDOROV, Y., BASKERVILLE, S., MAKSIMOVA, E., ROBINSON, K., KARPILOW, J., MARSHALL, W.S., and KHVOROVA, A. (2006). 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204.

97 BIRMINGHAM, A., ANDERSON, E., SULLIVAN, K., REYNOLDS, A., BOESE, Q., LEAKE, D., KARPILOW, J., and KHVOROVA, A. (2007). A protocol for designing siRNAs with high functionality and specificity. Nat. Protoc. 2, 2068–2078.

98 BROWN, B.D., VENNERI, M.A., ZINGALE, A., SERGI SERGI, L., and NALDINI, L. (2006). Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat. Med. 12, 585–591.

99 THOMAS, C.E., EHRHARDT, A., and KAY, M.A. (2003). Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346–358.

100 HIGH, K. (2005). Gene transfer for hemophilia: Can therapeutic efficacy in large animals be safely translated to patients? J. Thromb. Haemost. 3, 1682–1691.

101 DE GEEST, B.R., VAN LINTHOUT, S.A., and COLLEN, D. (2003). Humoral immune response in mice against a circulating antigen induced by adenoviral transfer is strictly dependent on expression in antigen-presenting cells. Blood 101, 2551–2556.

102 CHEN, C.Z., LI, L., LODISH, H.F., and BARTEL, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86.

103 BASKERVILLE, S., and BARTEL, D.P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247.

104 STRIPECKE, R., CARMEN VILLACRES, M., SKELTON, D., SATAKE, N., HALENE, S., and KOHN, D. (1999). Immune response to green fluorescent protein: Implications for gene therapy. Gene Ther. 6, 1305–1312.

105 BROWN, B.D., CANTORE, A., ANNONI, A., SERGI SERGI, L., LOMBARDO, A., DELLA VALLE, P., D’ANGELO, A., and NALDINI, L. (2007). A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110, 4144–4152.

专题文章
No Responses to “结语”

Leave a Reply


+ 6 = nine