首页  >  专题文章  >  文章正文
shRNA表达克隆

总结

May 06, 2008 No Comments

(VI)总结

       RNAi的发现对实验生物学产生了革命性的影响,因为它让基因敲除这一手段不仅可以成为一项实验技术,还可以成为一种可能的治疗药物。利用这一基因沉默技术对内源miRNA进行的研究揭示了miRNA家族比我们预想的要大很多,它们调节相当比例的编码转录,而miRNA诱导的基因沉默机制也是多变的。尽管这种沉默机制的多样性有利于精细的复杂调节网络,大量潜在的靶标将最终需要用基因组和蛋白质组方法来鉴定,而并不仅仅是单一的候选靶标的确定。由于RNAi药物治疗的副作用还不可预知,出于这些担忧而进行的研究,使得序列的多样性以及可能的miRNA产生通路的饱和性等问题逐渐呈现于我们面前。通过对分子进行修饰或者通过结合的方式逐渐增加特异性,从而弱化RNAi的脱靶效应在未来几年将是一个重点研究领域。小词典:mirtron:       果蝇的一种由短小的内含子发夹结构形成的miRNA,人们将命名为“mirtron”。这些miRNA的关键生物生成过程好像避开了Drosha的剪切,而这对于miRNA生物合成是必需的。       那么mirtron是如何形成的呢?研究人员发现mirtron的剪切机制是通过lariat-debranching酶产生miRNA类前体发夹,并且在Exportin-5发夹端口处融入到了正常的miRNA途径过程中,这两种发夹可以被之后途径中的Dicer-1/loqs处理。这样得到的小RNA可以与靶标很好地匹配,而且研究人员证明这些miRNA至少能部分的行使功能——通过RNA诱导的沉默复合效应子Ago1。       有研究指出mirtron可能是另外一种miRNA型调控性RNA,这为进一步解释生物RNA沉默机制提供了重要资料以及新的思路。   原文检索:HUMAN GENE THERAPY 19:17-26(Jannuary 2008). Mary Ann Liebert, Inc. DOI:10.1089/hum.2007.1226

(本文由 筱玥 付留春 编译)

参考文献:

1  NAPOLI, C., LEMIEUX, C., and JORGENSEN, R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.

2  VAN DER KROL, A.R., MUR, L.A., BELD, M., MOL, J.N., and STUITJE, A.R. (1990). Flavonoid genes in petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2, 291–299.

3  FIRE, A., XU, S., MONTGOMERY, M.K., KOSTAS, S.A., DRIVER, S.E., and MELLO, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

4  HAMILTON, A.J., and BAULCOMBE, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.

5  ELBASHIR, S.M., HARBORTH, J., LENDECKEL, W., YALCIN, A., WEBER, K., and TUSCHL, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

6  LEE, R.C., FEINBAUM, R.L., and AMBROS, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

7  WIGHTMAN, B., HA, I., and RUVKUN, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862.

8  OLSEN, P.H., and AMBROS, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680.

9  PASQUINELLI, A.E., REINHART, B.J., SLACK, F., MARTINDALE, M.Q., KURODA, M.I., MALLER, B., HAYWARD, D.C., BALL, E.E., DEGNAN, B., MULLER, P., SPRING, J., SRINIVASAN, A., FISHMAN, M., FINNERTY, J., CORBO, J., LEVINE, M., LEAHY, P., DAVIDSON, E., and RUVKUN, G. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89.

10 REINHART, B.J., SLACK, F.J., BASSON, M., PASQUINELLI, A.E., BETTINGER, J.C., ROUGVIE, A.E., HORVITZ, H.R., and RUVKUN, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

11 KLOOSTERMAN, W.P., and PLASTERK, R.H. (2006). The diverse functions of microRNAs in animal development and disease. Dev. Cell 11, 441–450.

12 GRIFFITH-JONES, S., GROCOCK, R.J., VAN DONGEN, S., BATEMAN, A., and ENRIGHT, A.J. (2006). miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144.

13 BENTWICH, I., AVNIEL, A., KAROV, Y., AHARONOV, R., GILAD, S., BARAD, O., BARZILAI, A., EINAT, P., EINAV, U., MEIRI, E., SHARON, E., SPECTOR, Y., and BENTWICH, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766–770.

14 BEREZIKOV, E., THUEMMLER, F., VAN LAAKE, L.W., KONDOVA, I., BONTROP, R., CUPPEN, E., and PLASTERK, R.H. (2006a). Diversity of microRNAs in human and chimpanzee brain. Nat. Genet. 38, 1375–1377.

15 BEREZIKOV, E., VAN TETERING, G., VERHEUL, M., VAN DE BELT, J., VAN LAAKE, L., VOS, J., VERLOOP, R., VAN DE WETERING, M., GURYEV, V., TAKADA, S., VAN ZONNEVELD, A.J., MANO, H., PLASTERK, R., and CUPPEN, E. (2006b). Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res. 16, 1289–1298.

16 LAGOS-QUINTANA, M., RAUHUT, R., MEYER, J., BORKHARDT, A., and TUSCHL, T. (2003). New microRNAs from mouse and human. RNA 9, 175–179.17 RODRIGUEZ, A., GRIFFITHS-JONES, S., ASHURST, J.L., and BRADLEY, A. (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910.

18 BASKERVILLE, S., and BARTEL, D.P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247.

19 ABOOBAKER, A.A., TOMANCAK, P., PATEL, N., RUBIN, G.M., and LAI, E.C. (2005). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl. Acad. Sci. U.S.A. 102, 18017–18022.

20 LEE, Y., JEON, K., LEE, J.T., KIM, S., and KIM, V.N. (2002). MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 21, 4663–4670.21 BRACHT, J., HUNTER, S., EACHUS, R., WEEKS, P., and PASQUINELLI, A.E. (2004). Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA 10, 1586–1594.

22 CAI, X., HAGEDORN, C.H., and CULLEN, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts thatcan also function as mRNAs. RNA 10, 1957–1966.

23 PARIZOTTO, E.A., DUNOYER, P., RAHM, N., HIMBER, C., and VOINNET, O. (2004). In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev. 18, 2237–2242.

24 FUKAO, T., FUKUDA, Y., KIGA, K., SHARIF, J., HINO, K., ENOMOTO, Y., KAWAMURA, A., NAKAMURA, K., TAKEUCHI, T., and TANABE, M. (2007). An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129, 617–631.

25 TAGANOV, K.D., BOLDIN, M.P., CHANG, K.J., and BALTIMORE, D. (2006). NF-kB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U.S.A. 103, 12481–12486.

26 POY, M.N., ELIASSON, L., KRUTZFELDT, J., KUWAJIMA, S., MA, X., MACDONALD, P.E., PFEFFER, S., TUSCHL, T., RAJEWSKY, N., RORSMAN, P., and STOFFEL, M. (2004). A pancreatic isletspecific microRNA regulates insulin secretion. Nature 432, 226–230.

27 KLOOSTERMAN, W.P., LAGENDIJK, A.K., KETTING, R.F., MOULTON, J.D., and PLASTERK, R.H. (2007). Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 5, e203.

28 KELLER, D.M., MCWEENEY, S., ARSENLIS, A., DROUIN, J., WRIGHT, C.V., WANG, H., WOLLHEIM, C.B., WHITE, P., KAESTNER, K.H., and GOODMAN, R.H. (2007). Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J. Biol. Chem. 282, 32084–32092.

29 LEE, Y., AHN, C., HAN, J., CHOI, H., KIM, J., YIM, J., LEE, J., PROVOST, P., RADMARK, O., KIM, S., and KIM, V.N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.

30 GREGORY, R.I., YAN, K.P., AMUTHAN, G., CHENDRIMADA, T., DORATOTAJ, B., COOCH, N., and SHIEKHATTAR, R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240.

31 HAN, J., LEE, Y., YEOM, K.H., KIM, Y.K., JIN, H., and KIM, V.N. (2004). The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027.

32 LANDTHALER, M., YALCIN, A., and TUSCHL, T. (2004). The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162–2167.

33 WANG, Y., MEDVID, R., MELTON, C., JAENISCH, R., and BLELLOCH, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380–385.

34 BERNSTEIN, E., KIM, S.Y., CARMELL, M.A., MURCHISON, E.P., ALCORN, H., LI, M.Z., MILLS, A.A., ELLEDGE, S.J., ANDERSON, K.V., and HANNON, G.J. (2003). Dicer is essential for mouse development. Nat. Genet. 35, 215–217.

35 KANELLOPOULOU, C., MULJO, S.A., KUNG, A.L., GANESAN, S., DRAPKIN, R., JENUWEIN, T., LIVINGSTON, D.M., and RAJEWSKY, K. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501.

36 OKAMURA, K., HAGEN, J.W., DUAN, H., TYLER, D.M., and LAI, E.C. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100.

37 RUBY, J.G., JAN, C.H., and BARTEL, D.P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86.

38 BEREZIKOV, E., CHUNG, W.J., WILLIS, J., CUPPEN, E., and LAI, E.C. (2007). Mammalian mirtron genes. Mol. Cell 28, 328–336.

39 KIM, Y.K., and KIM, V.N. (2007). Processing of intronic microRNAs. EMBO J. 26, 775–783.

40 YI, R., QIN, Y., MACARA, I.G., and CULLEN, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016.

41 LUND, E., GUTTINGER, S., CALADO, A., DAHLBERG, J.E., and KUTAY, U. (2004). Nuclear export of microRNA precursors. Science 303, 95–98.

42 HUTVAGNER, G., MCLACHLAN, J., PASQUINELLI, A.E., BALINT, E., TUSCHL, T., and ZAMORE, P.D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.

43 MACRAE, I.J., ZHOU, K., LI, F., REPIC, A., BROOKS, A.N., CANDE, W.Z., ADAMS, P.D., and DOUDNA, J.A. (2006). Struc- tural basis for double-stranded RNA processing by Dicer. Science 311, 195–198.

44 BERNSTEIN, E., CAUDY, A.A., HAMMOND, S.M., and HANNON, G.J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

45 CHENDRIMADA, T.P., GREGORY, R.I., KUMARASWAMY, E., NORMAN, J., COOCH, N., NISHIKURA, K., and SHIEKHATTAR, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744.

46 GREGORY, R.I., CHENDRIMADA, T.P., COOCH, N., and SHIEKHATTAR, R. (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640.

47 MANIATAKI, E., and MOURELATOS, Z. (2005). A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990.

48 MATRANGA, C., TOMARI, Y., SHIN, C., BARTEL, D.P., and ZAMORE, P.D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620.

49 RAND, T.A., PETERSEN, S., DU, F., and WANG, X. (2005). Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629.

50 LEUSCHNER, P.J., AMERES, S.L., KUENG, S., and MARTINEZ, J. (2006). Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314–320.

51 KIM, K., LEE, Y.S., and CARTHEW, R.W. (2007). Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. RNA 13, 22–29.

52 KHVOROVA, A., REYNOLDS, A., and JAYASENA, S.D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.

53 SCHWARZ, D.S., HUTVAGNER, G., DU, T., XU, Z., ARONIN, N., and ZAMORE, P.D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

54 TOMARI, Y., MATRANGA, C., HALEY, B., MARTINEZ, N., and ZAMORE, P.D. (2004). A protein sensor for siRNA asymmetry. Science 306, 1377–1380.

55 O’CARROLL, D., MECKLENBRAUKER, I., DAS, P.P., SANTANA, A., KOENIG, U., ENRIGHT, A.J., MISKA, E.A., and TARAKHOVSKY, A. (2007). A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 21, 1999–2004.

56 DIEDERICHS, S., and HABER, D.A. (2007). Dual role for Argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108.

57 RIVAS, F.V., TOLIA, N.H., SONG, J.J., ARAGON, J.P., LIU, J., HANNON, G.J., and JOSHUA-TOR, L. (2005). Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12, 340–349.

58 PHAM, J.W., PELLINO, J.L., LEE, Y.S., CARTHEW, R.W., and SONTHEIMER, E.J. (2004). A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94.

59 TUSCHL, T., ZAMORE, P.D., LEHMANN, R., BARTEL, D.P., and SHARP, P.A. (1999). Targeted mRNA degradation by doublestranded RNA in vitro. Genes Dev. 13, 3191–3197.

60 MANSFIELD, J.H., HARFE, B.D., NISSEN, R., OBENAUER, J., SRINEEL, J., CHAUDHURI, A., FARZAN-KASHANI, R., ZUKER, M., PASQUINELLI, A.E., RUVKUN, G., SHARP, P.A., TABIN, C.J., and MCMANUS, M.T. (2004). MicroRNA-responsive “sensor” transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat. Genet. 36, 1079–1083.

61 YEKTA, S., SHIH, I.H., and BARTEL, D.P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596.

62 SHEN, B., and GOODMAN, H.M. (2004). Uridine addition after microRNA-directed cleavage. Science 306, 997.

63 IBRAHIM, F., ROHR, J., JEONG, W.J., HESSON, J., and CERUTTI, H. (2006). Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts. Science 314, 1893.

64 BAGGA, S., BRACHT, J., HUNTER, S., MASSIRER, K., HOLTZ, J., EACHUS, R., and PASQUINELLI, A.E. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563.

65 DOENCH, J.G., PETERSEN, C.P., and SHARP, P.A. (2003). siRNAs can function as miRNAs. Genes Dev. 17, 438–442. EASOW, G., TELEMAN, A.A., and COHEN, S.M. (2007). Isolation of microRNA targets by miRNP immunopurification. RNA 13, 1198–1204.

66 DOENCH, J.G., and SHARP, P.A. (2004). Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504– 511.

67 MA, J.B., YUAN, Y.R., MEISTER, G., PEI, Y., TUSCHL, T., and PATEL, D.J. (2005). Structural basis for 5 -end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670.

68 PARKER, J.S., ROE, S.M., and BARFORD, D. (2005). Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex. Nature 434, 663–666.

69 SEGGERSON, K., TANG, L., and MOSS, E.G. (2002). Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225.

70 NOTTROTT, S., SIMARD, M.J., and RICHTER, J.D. (2006). Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat. Struct. Mol. Biol. 13, 1108–1114.

71 MATHONNET, G., FABIAN, M.R., SVITKIN, Y.V., PARSYAN, A., HUCK, L., MURATA, T., BIFFO, S., MERRICK, W.C., DARZYNKIEWICZ, E., PILLAI, R.S., FILIPOWICZ, W., DUCHAINE, T.F., and SONENBERG, N. (2007). MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–1767.

72 THERMANN, R., and HENTZE, M.W. (2007). Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447, 875–878.

73 HUMPHREYS, D.T., WESTMAN, B.J., MARTIN, D.I., and PREISS, T. (2005). MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. U.S.A. 102, 16961–16966.

74 PILLAI, R.S., BHATTACHARYYA, S.N., ARTUS, C.G., ZOLLER, T., COUGOT, N., BASYUK, E., BERTRAND, E., and FILIPOWICZ, W. (2005). Inhibition of translational initiation by let-7 microRNA in human cells. Science 309, 1573–1576.

75 WANG, B., LOVE, T.M., CALL, M.E., DOENCH, J.G., and NOVINA, C.D. (2006). Recapitulation of short RNA-directed translational gene silencing in vitro. Mol. Cell 22, 553–560.

76 WAKIYAMA, M., TAKIMOTO, K., OHARA, O., and YOKOYAMA, S. (2007). let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21, 1857–1862.

77 KIRIAKIDOU, M., TAN, G.S., LAMPRINAKI, S., DE PLANELLSAGUER, M., NELSON, P.T., and MOURELATOS, Z. (2007). An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141–1151.

78 GALLIE, D.R., and TANGUAY, R. (1994). Poly(A) binds to initiation factors and increases cap-dependent translation in vitro. J. Biol. Chem. 269, 17166–17173.

79 LYTLE, J.R., YARIO, T.A., and STEITZ, J.A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc. Natl. Acad. Sci. U.S.A. 104, 9667–9672.

80 CHENDRIMADA, T.P., FINN, K.J., JI, X., BAILLAT, D., GREGORY, R.I., LIEBHABER, S.A., PASQUINELLI, A.E., and SHIEKHATTAR, R. (2007). MicroRNA silencing through RISC recruitment of eIF6. Nature 447, 823–828.

81 BEHM-ANSMANT, I., REHWINKEL, J., DOERKS, T., STARK, A., BORK, P., and IZAURRALDE, E. (2006). mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898.

82 EULALIO, A., REHWINKEL, J., STRICKER, M., HUNTZINGER, E., YANG, S.F., DOERKS, T., DORNER, S., BORK, P., BOUTROS, M., and IZAURRALDE, E. (2007). Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558–2570.

83 GIRALDEZ, A.J., MISHIMA, Y., RIHEL, J., GROCOCK, R.J., VAN DONGEN, S., INOUE, K., ENRIGHT, A.J., and SCHIER, A.F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79.

84 WU, L., FAN, J., and BELASCO, J.G. (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. U.S.A. 103, 4034–4039.

85 LIU, J., VALENCIA-SANCHEZ, M.A., HANNON, G.J., and PARKER, R. (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719–723.

86 BHATTACHARYYA, S.N., HABERMACHER, R., MARTINE, U., CLOSS, E.I., and FILIPOWICZ, W. (2006). Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb. Symp. Quant. Biol. 71, 513–521.

87 PILLAI, R.S., ARTUS, C.G., and FILIPOWICZ, W. (2004). Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10, 1518–1525.

88 LEWIS, B.P., BURGE, C.B., and BARTEL, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

89 GRIMSON, A., FARH, K.K., JOHNSTON, W.K., GARRETTENGELE, P., LIM, L.P., and BARTEL, D.P. (2007). MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell 27, 91–105.

90 SETHUPATHY, P., MEGRAW, M., and HATZIGEORGIOU, A.G. (2006). A guide through present computational approaches for the identification of mammalian microRNA targets. Nat. Methods 3, 881–886.

91 AMERES, S.L., MARTINEZ, J., and SCHROEDER, R. (2007). Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101–112.

92 KERTESZ, M., IOVINO, N., UNNERSTALL, U., GAUL, U., and SEGAL, E. (2007). The role of site accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284.

93 NAKAHARA, K., KIM, K., SCIULLI, C., DOWD, S.R.,MINDEN, J.S., and CARTHEW, R.W. (2005). Targets of microRNA regulation in the Drosophila oocyte proteome. Proc. Natl. Acad. Sci. U.S.A. 102, 12023–12028.

94 ZHAO, Y., RANSOM, J.F., LI, A., VEDANTHAM, V., VON DREHLE, M., MUTH, A.N., TSUCHIHASHI, T., MCMANUS, M.T., SCHWARTZ, R.J., and SRIVASTAVA, D. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317.

95 RODRIGUEZ, A., VIGORITO, E., CLARE, S., WARREN, M.V., COUTTET, P., SOOND, D.R., VAN DONGEN, S., GROCOCK, R.J., DAS, P.P., MISKA, E.A., VETRIE, D., OKKENHAUG, K., ENRIGHT, A.J., DOUGAN, G., TURNER, M., and BRADLEY, A. (2007). Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611.

96 THAI, T.H., CALADO, D.P., CASOLA, S., ANSEL, K.M., XIAO, C., XUE, Y., MURPHY, A., FRENDEWEY, D., VALENZUELA, D., KUTOK, J.L., SCHMIDT-SUPPRIAN, M., RAJEWSKY, N., YANCOPOULOS, G., RAO, A., and RAJEWSKY, K. (2007). Regulation of the germinal center response by microRNA-155. Science 316, 604–608.

97 XIAO, C., CALADO, D.P., GALLER, G., THAI, T.H., PATTERSON, H.C., WANG, J., RAJEWSKY, N., BENDER, T.P., and RAJEWSKY RAJEWSKY, K. (2007). MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–159.

98 BRUMMELKAMP, T.R., BERNARDS, R., and AGAMI, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.

99 MCMANUS, M.T., PETERSEN, C.P., HAINES, B.B., CHEN, J., and SHARP, P.A. (2002b). Gene silencing using micro-RNA designed hairpins. RNA 8, 842–850.

100 PADDISON, P.J., CAUDY, A.A., BERNSTEIN, E., HANNON, G.J., and CONKLIN, D.S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958.

101 SUI, G., SOOHOO, C., AFFAR EL, B., GAY, F., SHI, Y., FORRESTER, W.C., and SHI, Y. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 99, 5515–5520.

102 YU, J.Y., DERUITER, S.L., and TURNER, D.L. (2002). RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 99, 6047–6052.

103 ZENG, Y., WAGNER, E.J., and CULLEN, B.R. (2002). Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333.

104 CHI, J.T., CHANG, H.Y., WANG, N.N., CHANG, D.S., DUNPHY, N., and BROWN, P.O. (2003). Genomewide view of gene silencing by small interfering RNAs. Proc. Natl. Acad. Sci. U.S.A. 100, 6343–6346.

105 JACKSON, A.L., BARTZ, S.R., SCHELTER, J., KOBAYASHI, S.V., BURCHARD, J., MAO, M., LI, B., CAVET, G., and LINSLEY, P.S. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637.

106 LIM, L.P., LAU, N.C., GARRETT-ENGELE, P., GRIMSON, A., SCHELTER, J.M., CASTLE, J., BARTEL, D.P., LINSLEY, P.S., and JOHNSON, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773.

107 JACKSON, A.L., BURCHARD, J., LEAKE, D., REYNOLDS, A., SCHELTER, J., GUO, J., JOHNSON, J.M., LIM, L., KARPILOW, J., NICHOLS, K., MARSHALL, W., KHVOROVA, A., and LINSLEY, P.S. (2006). Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12, 1197–1205.

108 McMANUS, M.T., HAINES, B.B., DILLON C.P., WHITEHURST, C.E., VAN PARIJS, L., CHEN, J., and SHARP, P.A. (2002a). Small interfering RNA-mediated gene silencing in T lymphocytes. J. Immunol. 169, 5754–5760.

109 CASTANOTTO, D., SAKURAI, K., LINGEMAN, R., LI, H., SHIVELY, L., AAGAARD, L., SOIFER, H., GATIGNOL, A., RIGGS, A., and ROSSI, J.J. (2007). Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res. 35, 5154–5164.

110 YI, R., DOEHLE, B.P., QIN, Y., MACARA, I.G., and CULLEN, B.R.(2005). Overexpression of Exportin-5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11, 220–226.

111 JOHN, M., CONSTIEN, R., AKINC, A., GOLDBERG, M., MOON, Y.A., SPRANGER, M., HADWIGER, P., SOUTSCHEK, J., VORNLOCHER, H.P., MANOHARAN, M., STOFFEL, M., LANGER, R., ANDERSON, D.G., HORTON, J.D., KOTELIANSKY, V., and BUMCROT, D. (2007). Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 449, 745–747.

专题文章
No Responses to “总结”

Leave a Reply


8 + six =